ATOMI specifications

From Granite Devices Knowledge Wiki
Revision as of 10:22, 2 June 2017 by Esa (Talk | contribs) (Setpoint signal / reference inputs)


Jump to: navigation, search

Device variations

ATOMI is available in three different models. See also ATOMI device model comparison.

ATOMI DeepStep
Basic model for stepper motor operation only
ATOMI Standard
Additional features and supported motor types
ATOMI Advanced
Most features

Motor output

Maximum output current throttling vs device temperature. Current is automatically reduced by device to protect from overheating.
Property Value Units Remarks
Supported motors Refer to ATOMI device model comparison page Permanent magnet motors only
Continuous output current 0-8 1 A (peak value of sine) User settable limit
Maximum effective motor phase output voltage
  • 3-phase AC motors: Vsupply*0.671 V RMS (phase-to-phase)
  • DC motors: Vsupply*0.95 VDC
  • I.e. at 48V supply, the maximum three-phase motor output voltage is 32.2 V RMS phase-to-phase
  • I.e. at 48V supply, the maximum DC motor output voltage is 45.6 V
Switching frequency 20.0 kHz
Maximum modulation depth 95  % Maximum effective output is 95% of HV DC bus voltage.
Torque control bandwidth (typ.) 1-3.3 kHz Motor coil dependent
Torque control cycle time 50.0 µs
Position & velocity control cycle time 400 µs
Power conversion efficiency 93-97  % Under typical conditions
Motor inductance range @ 48 VDC 0.2-25 mH
Motor inductance range @ 24 VDC 0.1-25 mH
Motor power range 0.01 - 0.5 kW
AC commutation frequency 0-400 Hz Not capped, may achieve up to 2 kHz

1) Maximum current is obtainable only for short periods without active air cooling. Drive automatically throttles current limit if drive temperature rises beyond 75 Celsius. Output current capacity reduces linearly between 75 and 90 degrees Celsius from the maximum to zero.

Regenerative resistor

ATOMI has an on-board 15 Ohm 11 Watt regenerative resistor.

Feedback devices

ATOMI supports quadradure (incremental) encoders with single-ended 3-5.5V (CMOS, TTL, open collector).

Quadrature encoder electrical properties

Property Value Units Remarks
Encoder count rate
  • ATOMI DeepStep and Standard: 0-4
  • ATOMI Advanced: 0-18
MHz After 4x decoding, digitally filtered
Supply voltage 4.8-5.2 V Supplied externally (can share same voltage with drive logic supply)
Encoder resolution
  • ATOMI DeepStep and Standard: 100-65535
  • ATOMI Advanced: 100-15000000
Pulses per revolution (P/R)

Setpoint signal / reference inputs

Setpoint signal type Status Electrical interface
Analog ATOMI Advanced only 0 - 3.3 V input signal. External circuitry needed for ±10 V operation.
Pulse and direction Standard feature

Maximum step rate

  • ATOMI DeepStep and Standard: 4 MHz
  • ATOMI Advanced: 8 MHz
PWM ATOMI Advanced only
  • 1-30 kHz PWM carrier frequency (fPWM), ~3 kHz for optimal operation.
  • Single signal (no polarity input), zero setpoint at 50% duty
  • PWM signal is sampled at 60MHz timer thus reading resolution is 60MHz/fPWM
  • PWM+Polarity input mode
Serial communication Standard feature SimpleMotion V2 real-time serial bus with open source SDK. Connect through USB.
EtherCAT Planned Realized with add-on board

See also:

Mechanical

Dimension drawing
Property Value Units
Dimensions 160 × TBA (~17) × 91 (W×H×D) mm
Weight TBA kg
Drawings TBA PDF/IGES/STEP

Note: all mounting holes are 3.2 mm diameter.

Electrical

Power supply

Input voltage Input current when idle Input current max
12 - 49 VDC Typically < 0.4 A Depends on total power output.

Note: ATOMI doesn't have an input diode for reverse input voltage protection (needed for some switching power supplies).

I/O

Please see ATOMI connectors and pinouts.

Environment

Property Value Units
Operating temperature 10 - 70 °C
Storage temperature -30 - 90 °C
Humidity 0 - 95 non-condensing  %

Warnings


In no event the Product Information or parts hereof shall be regarded as guarantee of conditions or characteristics. The Product Information or any part thereof may also not be regarded as a warranty of any kind. No liability of any kind shall be assumed by Author with respect to Product Information or any use made by you thereof, nor shall Author indemnify you against or be liable for any third party claims with respect to such information or any use thereof.

As content of this Wiki may be edited by user community, Granite Devices Oy or it's affiliates do not take any responsibility of the contents of this Wiki. Use information at your own risk. However, Granite Devices staff attempts to review all changes made to this Wiki and keep information trustworthy.

Without written consent, Granite Devices' Products or Intellectual Property shall not be used in situations or installations where living beings, material property, or immaterial property could be harmed by the operation, features or failures of Product. Products may only be used in a way where hazards like moving parts, electric shock, laser radiation, or fire can't be realized even if the content of this Wiki would suggest otherwise.