Tuning velocity controller

From Granite Devices Knowledge Wiki
Revision as of 22:23, 28 August 2013 by Tero K (Talk | contribs)


Jump to: navigation, search

ARTICLE UNDER CONSTRUCTION - DON'T USE

Velocity controller tuning means finding the correct drive settings and feedback gain values to achieve a proper Servo stiffness and response to a velocity setpoint change.

This tuning guide is for you if the final application uses the motor in velocity control mode such as spindle or as position mode with external closed loop position controller such as EMC2.

Velocity control tuning method

Preparations

An example of Testing tab settings for velocity controller tuning. Different settings should be experimented during the process to observe the stability and behavior of the settings.
Initial settings on Goals tab before beginning the example in this tuning guide.

Steps to do to begin position tuning:

  • Ensure that motor is parameterized correctly and working and torque control tuning has been properly done.
  • Attach motor to the target load and ensure it can rotate in both directions infinitely
  • Make following parameter changes to Granity and click apply afterwards:
    • Set drive in velocity control mode CM
    • Choose Serial only setpoint input CM
    • Make other necessary adjustments to have drive powered and enabled
    • Untick Setpoint smoothing CIS
    • Set Goals tab DIV and MUL to 50
    • Set acceleration CAL & velocity CVL limits reasonably to the levels that motor is expected to handle
  • Set-up the test stimulus and capture settings from Testing tab (an example, may be varied):
    • Set target setpoint 1 TSP1 between 1000 and 16383 (16383 equals the max speed that is configured via CVL)
    • Set delay 1 TSD1 to 0.25 seconds
    • Set target setpoint 2 TSP2 to same, but negative, value of TSP1
    • Set delay1 STD2 to 0.25 s
    • Choose sample rate TSR of 500 to 2500 Hz
    • Choose Capture setpoint change in positive direction from the dropdown
    • Tick Continuously repeating capture
    • Tick Velocity setpoint and Velocity achieved from signals
    • Tick Start capture to begin continous capture.
    • Tick Enable test stimulus TSE to begin a continuous position back and forth spinning motion generation

Once the steps above are done, motor should be generating direction reversing spinning and velocity response graphs should appear on the right side of Granity about once in 3-5 seconds.

Finding velocity control gain values

Veltuning2.png Veltuning3.png Veltuning4.png Veltuning5.png Veltuning6.png

Velocitylowgain.png Velocitylowgainff.png Velocitystable.png Currentsaturatin.png Velocityunstable.png

Steps to do after tuning finished

  • Stop test stimulus by unticking TSE
  • Stop scope catpure by unticking Continuously repeating capture
  • Undo all temporary changes made to settings
  • Save settings to drive memory by clicking Save settings on drive non-volatile memory button
  • Set preferred setpoint source CRI, also consider the use of CIS
  • If setpoint signal scaling is needed, adjust MUL and DIV values

In no event the Product Information or parts hereof shall be regarded as guarantee of conditions or characteristics. The Product Information or any part thereof may also not be regarded as a warranty of any kind. No liability of any kind shall be assumed by Author with respect to Product Information or any use made by you thereof, nor shall Author indemnify you against or be liable for any third party claims with respect to such information or any use thereof.

As content of this Wiki may be edited by user community, Granite Devices Oy or it's affiliates do not take any responsibility of the contents of this Wiki. Use information at your own risk. However, Granite Devices staff attempts to review all changes made to this Wiki and keep information trustworthy.

Without written consent, Granite Devices' Products or Intellectual Property shall not be used in situations or installations where living beings, material property, or immaterial property could be harmed by the operation, features or failures of Product. Products may only be used in a way where hazards like moving parts, electric shock, laser radiation, or fire can't be realized even if the content of this Wiki would suggest otherwise.