Motor types
Position, velocity and torque/force control applications mainly rely on two main categories of motors: servo motors and stepping motors.
Servo motor is a electromechanical mechanical actuator with feedback allowing precision closed loop motion control and monitoring.
Stepping motor is a low cost alternative to servo motors and can be operated without feedback device.
Contents
Construction
Servo motor consists two main parts:
- Motor part - typically electromagnetic device that produces torque or force when driven with current
- Feedback device - typically electronic device that outputs measurement information such as shaft angle or velocity
Stepping motors can be used without any feedback device.
Shapes
Motors and feedback devices come mainly in two shapes:
- Rotary
- Linear
Shape of motor doesn't change their electromechanical principle so both types of motors can be driven with same drives.
Motor technologies
List of electromagnetic motor part types.
AC
Typical AC (alternating current) servo motor is a 3 phase permanent magnet syncronous machine. This type of motors are driven by 3 wires each driving one phase coil. In ideal case 3 phase AC servo is driven by sinusoidal current waveforms that are synchronized to the permanent magnet rotor.
BLDC
BLDC (brushless DC) is very similar to AC motor with only expection that it is desgined to be driven by trapezoidal current waveforms instead of sinusoidal. BLDC motors can always be driven with same drives regardless of current waveform matching.
Brush DC
Brush DC (direct current) motors typically have permanent magnet stator and rotor with mechanical commutator with brushes.
Stepping motor
Stepper motors are high pole count permanent magnet brushless motors with 2 or 3 phase windings. High pole count enables position control without feedback devices but with several drawbacks such as risk of lost position.
Feedback device types
Encoder
Quadrature encoders are nowadays the most common feedback device type in servo motors. Quadrature encoders are incremental sensors so they require position zeroing/homing to get absolute position feedback.
Another type of encoder is absolute encoder. Absolute encoders typically output serial data of absolute position thus they may not need to be zeroed. The drawback of absolute sensors is higher price and lower compatibility & interchangeability.
Resolver/synchro
Resolver is an analog technology based on rotary transformer that can provide absolute position (single turn absolute, for multiturn absolute position zeroing is still needed). Resolvers are good for harsh conditions but don't provide as high precision as encoders.
Tachometer
Tachometer is a small DC generator that outputs DC voltage proportional to rotation speed. It can be used as velocity feedback device but not as position sensor. Tachometers are often seen in dual-loop configurations with position sensor.
Hall sensors
Hall sensors are found in AC & BLDC motors only. Halls provide commutation information (drive current phase angle) for drive. Modern drives such as all GD drives don't require Hall sensors but can utilize them to make faster power-up possible. Hall sensors are too low resolution for position or high performance velocity control.
Comparison
Comparison of motor technologies
Stepping motor | DC servo | BLDC servo | AC servo | |
---|---|---|---|---|
Closed loop | No | Yes | Yes | Yes |
Torque control | No, inpractical | Yes | Yes | Yes |
Velocity control | Yes | Yes | Yes | Yes |
Position control | Yes | Yes | Yes | Yes |
Available speed range | Low, Medium | Medium | High | Highest |
Rated torque vs size | High | Low | Medium | Medium |
Dynamic performance | Low, medium | Medium | High | Highest |
Motion smoothness | Low to high | Medium | Medium | High |
Endurance | High | Medium | High | High |
Energy efficiency | Low, medium | Medium | High | High |
In no event the Product Information or parts hereof shall be regarded as guarantee of conditions or characteristics. The Product Information or any part thereof may also not be regarded as a warranty of any kind. No liability of any kind shall be assumed by Author with respect to Product Information or any use made by you thereof, nor shall Author indemnify you against or be liable for any third party claims with respect to such information or any use thereof.
As content of this Wiki may be edited by user community, Granite Devices Oy or it's affiliates do not take any responsibility of the contents of this Wiki. Use information at your own risk. However, Granite Devices staff attempts to review all changes made to this Wiki and keep information trustworthy.
Without written consent, Granite Devices' Products or Intellectual Property shall not be used in situations or installations where living beings, material property, or immaterial property could be harmed by the operation, features or failures of Product. Products may only be used in a way where hazards like moving parts, electric shock, laser radiation, or fire can't be realized even if the content of this Wiki would suggest otherwise.