Difference between revisions of "Regenerative resistor"

From Granite Devices Knowledge Wiki
Jump to: navigation, search
[checked revision][checked revision]
m (Text replacement - "\[\[([A-Z]{2,3})\]\]" to "{{param|$1}}")
 
Line 3: Line 3:
 
Servo drive with motor can act two ways: energy supply and energy generator. The generator behavior occurs during decelerations and this causes current flow from motor to drive power supply capacitors. If that generated energy is not absorbed anywhere, the voltage of capacitors will rise above overvoltage threshold and trigger an software clearable overvoltage fault.
 
Servo drive with motor can act two ways: energy supply and energy generator. The generator behavior occurs during decelerations and this causes current flow from motor to drive power supply capacitors. If that generated energy is not absorbed anywhere, the voltage of capacitors will rise above overvoltage threshold and trigger an software clearable overvoltage fault.
  
{{tip|In most installations braking resistor is not needed at all. Resistor is needed in cases where fast moving motor with high inertial load is stopped rapidly causing conversion of the kinetic energy into electric current which needs to be dissipated by a resistor. Experimenting without resistor is safe as drive's overvoltage protection will prevent any damage occurring. If drive faults to overvoltage fault during deceleration, then try adjusting [[FOV]] to higher value or add a braking resistor.}}
+
{{tip|In most installations braking resistor is not needed at all. Resistor is needed in cases where fast moving motor with high inertial load is stopped rapidly causing conversion of the kinetic energy into electric current which needs to be dissipated by a resistor. Experimenting without resistor is safe as drive's overvoltage protection will prevent any damage occurring. If drive faults to overvoltage fault during deceleration, then try adjusting {{param|FOV}} to higher value or add a braking resistor.}}
  
 
==Overvoltage faults==
 
==Overvoltage faults==
Line 12: Line 12:
 
<gallery widths="330px" heights="500px">
 
<gallery widths="330px" heights="500px">
 
File:regeneration1.png|Voltage generation during deceleration of motor (motor current is negative, current is pumped to HV DC bus causing a 40 VDC rise).
 
File:regeneration1.png|Voltage generation during deceleration of motor (motor current is negative, current is pumped to HV DC bus causing a 40 VDC rise).
File:regeneration2.png|Voltage generation during deceleration of motor (motor current is negative, current is pumped to HV DC bus). However, in this case drive is equipped with regenerative resistor and tightly set [[FOV]] parameter which prevents the significant voltage rise (only 5 VDC rise).
+
File:regeneration2.png|Voltage generation during deceleration of motor (motor current is negative, current is pumped to HV DC bus). However, in this case drive is equipped with regenerative resistor and tightly set {{param|FOV}} parameter which prevents the significant voltage rise (only 5 VDC rise).
 
File:regeneration3accel.png|Example of accelerating motor (motor current is positive, power is drawn from HV DC bus which is causing a temporary voltage drop). Rectified 50 Hz mains AC ripple is easily seen in the voltage graph.
 
File:regeneration3accel.png|Example of accelerating motor (motor current is positive, power is drawn from HV DC bus which is causing a temporary voltage drop). Rectified 50 Hz mains AC ripple is easily seen in the voltage graph.
 
</gallery>
 
</gallery>

Latest revision as of 19:54, 28 August 2015

250 Watt 82 ohm regenerative resistor suitable for Argon drive
Regenerative resistors are usually a part with servo systems to absorb returned energy from decelerating or braking servo axis.

Servo drive with motor can act two ways: energy supply and energy generator. The generator behavior occurs during decelerations and this causes current flow from motor to drive power supply capacitors. If that generated energy is not absorbed anywhere, the voltage of capacitors will rise above overvoltage threshold and trigger an software clearable overvoltage fault.

Overvoltage faults[edit | edit source]

Scenarios where returned energy is causing the rise of HV DC bus voltage:

  • Deceleration of motor speed when there is significant amount of energy stored in mechanical motion (rotating inertia or moving mass). This typically occurs with spindles and linear axes.
  • Sudden reversal of torque setpoint. This can generate voltage spike even when motor is standing still. This typically occurs in high bandwidth torque control applications (such as Force feedback system (FFB)). These spikes are very short and an added capacitor to HV DC bus and/or low resistance regenerative resistor can provide a solution.

See also[edit | edit source]