Difference between revisions of "Argon user guide/Wiring"

From Granite Devices Knowledge Wiki
Jump to: navigation, search
[checked revision][checked revision]
(Mechanical installation)
(Mechanical installation and cooling)
Line 5: Line 5:
 
Cooling may be further by mounting additional [[Argon user guide/Mating connectors and accessories|heat sinks]] to the bottom of the device and/or using a fan blowing air from bottom to up. If fan is used, it should have dust filter to prevent dust inside the drives.  
 
Cooling may be further by mounting additional [[Argon user guide/Mating connectors and accessories|heat sinks]] to the bottom of the device and/or using a fan blowing air from bottom to up. If fan is used, it should have dust filter to prevent dust inside the drives.  
  
Such additional cooling measures are typically necessary only when average output current is higher than 4 Amperes. Most of [[Control modes|position control]] servo systems run cool enough without additional cooling as the load is highly varying and the average output power is low. In any case, it is safe to experiment without cooling as drive's over temperature protection will shut down the drive in case of overheating.
+
Such additional cooling measures are typically necessary only when average output current is higher than 4 Amperes [[peak value of sine]]. Most of [[Control modes|position control]] servo systems run cool enough without additional cooling as the load is highly varying and the average output power is low. In any case, it is safe to experiment without cooling as drive's over temperature protection will shut down the drive in case of overheating.
  
 
==Wiring overview==
 
==Wiring overview==

Revision as of 21:17, 3 September 2013

Mechanical installation and cooling

A proper Argon installation orientation and spacing with optional heat sinks and an optional cooling fan.
Argon drives should be installed vertically (J5 connector up) with at least 50 mm free air space between the device surfaces and possible cabinet walls to allow heat transfer along the heat sink side of the device.

Cooling may be further by mounting additional heat sinks to the bottom of the device and/or using a fan blowing air from bottom to up. If fan is used, it should have dust filter to prevent dust inside the drives.

Such additional cooling measures are typically necessary only when average output current is higher than 4 Amperes peak value of sine. Most of position control servo systems run cool enough without additional cooling as the load is highly varying and the average output power is low. In any case, it is safe to experiment without cooling as drive's over temperature protection will shut down the drive in case of overheating.

Wiring overview

Wiringoverview notitle.png

The minimum wiring for a servo system (after configuration state)
  1. Safety earthing to port J4 and preferably to the Argon case
  2. 24 VDC wiring to port J3
  3. Safe torque off and enable signals to port J2. See how.
  4. Motion controller wiring:
    1. if pulse & direction, analog, PWM or quadrature setpoint signal used, wire signals to port J5
    2. if setpoint delivered over SimpleMotion V2 bus, then a cable from SimpleMotion V2 compatible communication interface device to J2
  5. Axis limit switches wired to port J5
  6. Feedback device wiring to port J1
  7. Motor connection to port J4
  8. AC input power to port J4. Use an external fuse with this input.
Optional wiring
  1. AC Power line filter on the wire entering J4
  2. Wiring of optional braking resistor to port J4
  3. Motor solenoid brake wiring to port J3
Additionally following are required for drive configuration with Granity
  1. A cable from SimpleMotion V2 USB adapter to port J2

Ports and connectors

Argon front side connections Argon side connections & DIP switches

J1 feedback device port

J1 connector type is 15 pin female D-Sub and should be mated with 15 pin male D-Sub counterpart.

For pin-out and connection examples, see the main article J1 connector wiring.

J2.1 and J2.2 Simplemotion & E-stop ports

J2.1 and J2.2 are RJ45 type connectors and mates with standard Cat 5 & 6 Ethernet cables. Both of these ports are connected pin-to-pin parallel to allow chaining of Argon devices.

See the main article SimpleMotion V2 port.

J3 24V power and motor brake port

J3 is a 3 pole terminal block type connector used for supplying 24VDC to drive and optionally controlling motor solenoid brake.

See the main article J3 connector wiring.

J4 power & motor port

J4 is a 10 pole terminal block connector for several functions: earthing, AC power input, motor output, regenerative resistor output and HV DC link sharing.

See the main article J4 connector wiring.

J5 Inputs/Outputs

J5 Is a 26 pin IDC connector located on the side of Argon. The connector serves as general purpose I/O with setpoint signal inputs featuring: limit & home switch inputs, status indicator outputs, analog, pulse and direction, quadrature or PWM types of setpoint inputs and secondary feedback device input.

See the main article Argon I/O connector electrical interfacing for pin-out and wiring guide.

J6 Expansion slot

This slot is reserved for Argon add-on card that may be installed inside the drive.

DIP Switches

DIP switches serves as address selector when connecting the drive to SimpleMotion V2 bus or Granity.

See the main article Setting device bus address.

Mating parts

See list of Argon mating connectors and accessories

Wiring recommendations

Read general wiring recommendations articles at:

Basic wiring scheme

Before wiring, be sure to read through the main articles regarding J1-J5 ports.

Connecting multiple drives

Note this drawing does not include wiring to motor (J4), motor brake (J3), feedback device (J1), controller (J5) and AC power input circuity. Argon wiring multiple.png

Wiring of single drive

Argonwiringoverview.png